首页> 外文OA文献 >Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: pure fluids vs. zeotropic mixtures
【2h】

Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: pure fluids vs. zeotropic mixtures

机译:重型内燃机热回收ORC的热力学优化:纯流体与共沸混合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article focuses on the optimization of ORCs for heat recovery from heavy duty Internal Combustion Engines (ICEs), with particular attention to the optimal fluid selection. We considered two different ICEs featuring same power (10 MW) but different architectures: a two-stroke engine with exhaust temperature 250°C and a four-stroke engine with 350°C exhaust temperature. The analysis tackles the optimization of the heat integration between heat sources and ORC, the optimization of the cycle variables as well as the selection of the working fluid. In addition to conventional pure substances, such as hydrocarbons, refrigerants, and siloxanes, and recently synthesized refrigerants, (i.e., HFOs, HCFOs, and HFEs), also binary zeotropic mixtures have been considered. The optimization algorithm combines the evolutionary optimization algorithm PGS-COM with a systematic heat integration methodology which maximizes the heat recovered from the available heat sources. The methodology allows optimizing also the mixture composition. In total 36 pure fluids and 36 mixtures have been evaluated. HCFO-1233zde turns out to be the best or second best fluid for most cases. Cyclopentane is the best fluid for the engine with high exhaust temperature. Another promising fluid is NovecTM 649. The optimal cycles are supercritical with T-s diagrams resembling the ideal triangular cycle. The use of the mixtures leads to an increase of the exergy efficiency of around 2.5 percentage points (about 3.5 percentage point increase in net power output). Since the optimal cycle is supercritical, the temperature glide can be exploited only in condensation and, as a result, the advantage of mixtures compared to pure fluids is lower than the values reported in the literature.
机译:本文重点介绍用于从重型内燃机(ICE)回收热量的ORC的优化,尤其要注意最佳的流体选择。我们考虑了两种具有相同功率(10 MW)但结构不同的ICE:排气温度为250°C的两冲程发动机和排气温度为350°C的四冲程发动机。该分析解决了热源和ORC之间热集成的优化,循环变量的优化以及工作流体的选择。除了常规的纯净物质(例如碳氢化合物,制冷剂和硅氧烷)以及最近合成的制冷剂(即HFO,HCFO和HFE)以外,还考虑了二元共沸混合物。该优化算法将进化优化算法PGS-COM与系统化的热集成方法相结合,该方法可以使从可用热源回收的热量最大化。该方法还可以优化混合物成分。总共评估了36种纯净流体和36种混合物。事实证明,HCFO-1233zde在大多数情况下是最好的或第二好的流体。环戊烷是排气温度高的发动机的最佳流体。另一个很有希望的流体是NovecTM649。最佳循环是超临界的,其T-s图类似于理想的三角循环。混合物的使用使火用效率提高了约2.5个百分点(净功率输出提高了约3.5个百分点)。由于最佳循环是超临界的,因此只能在冷凝中利用温度滑移,因此,与纯流体相比,混合物的优势低于文献报道的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号